文章编号:0253-2239(2001)12-1426-02

超强超短激光场有质动力电离产生 极端非平衡态等离子体* ——一种新的强场电离模型

程 亚 李儒新 曾志男 徐至展

(中国科学院上海光学精密机械研究所,上海 201800)

摘要: 提出了极短脉冲超强激光(相对论性)与原子相互作用中的有质动力电离模型的新概念,并给出数值模拟 结果。基于该电离机制,可以产生处于极端非平衡态的等离子体。

关键词: 超强超短激光;有质动力电离;等离子体

中图分类号:0531 文献标识码:A

自从啁啾脉冲放大(CPA)技术^[1]问世以来,激 光功率密度迅速提高,目前已经可以在中小实验室 内比较容易地得到 10¹⁸ W/cm² 的激光功率密度。 这个密度超过了原子内部库仑场的强度约 1~2个 量级。光与原子相互作用的微扰论模型早已不再适 用,同时电子在激光场中的振荡速度也将接近光速, 使得洛伦兹力变得非常重要,通常处理光与原子相 互作用的偶极近似也彻底失效。因此,强光场中原 子的电离过程可能有其全新的实现机制而完全不同 于以往的电离过程^{2,3]}。

针对极短脉冲(约 10 fs)超高强度(大于 10¹⁸ W/cm²)的激光场 本文建立了一种新的基于激 光有质动力(源于洛伦兹力)作用的电离模型。

首先,对于如此高强度的激光,可以用经典理论 来描述激光与原子中电子的相互作用。同时由于激 光脉冲是极短的,离子的运动可以完全忽略;并且电 子在激光场中的振荡次数也很少,从而与核的作用 相对大为减弱。此外,因为此时光场中的电场分量 强度已经远远超过原子中的库仑场强,我们可以合 理地假想在激光场包络经过原子的时候,原子中的 电子仅仅感受到激光场的作用。基于这些假设,根 据 Sarachik 和 Schappert 在 1970 年的经典文献中的

* 国家自然科学基金(19974058)、国家杰出青年科学基金 (69925513)、上海应用物理中心(99JC14006)、国家重点基础 研究发展规划项目(G1999075200)、国家863高科技项目资 助课题。

收稿日期 2000-09-21; 收到修改稿日期 2000-11-08

理论^[4],当一维激光脉冲经过自由电子时,它的有质 动力将在激光上升沿加速电子;随后当激光场的下 降沿追赶上电子时,有质动力又减速电子;最后在激 光场超越并离开电子的时候,电子剩余能量为零,并 且相对其初始位置有一个位置平移δ。如果这个平 移δ足够大,则可以认为激光场已经利用有质动力 将电子剥离原子核,形成电离。这种新的电离机制, 我们称之为有质动力电离机制。值得注意的是在这 个模型中,电子电离后的温度几乎为零,这是非常独 特的现象。

我们的数值模拟初步证明了该论断。图 1 中给 出了模拟的结果 图 1(a)反映了电子能量随时间的 变化 图 1(b)反映了电子与原子核距离随时间的变 化。我们取一维激光场的形式为:

 $E = E_0 \exp \left[-\frac{(z - ct)^2}{2\sigma^2} \right] \sin \left[k_0 (z - ct) \right],$

 σ 为脉冲宽度 本文中取为三个光周期的长度 ,激光 场强度取为 3.5 × 10¹⁸ W/cm² ;库仑场形式为软核 势: $-\frac{1}{\sqrt{a^2 + r^2}}$ (该软核势避免了库仑场在原点的 发散),其中参数 a = 1,相当于基态电子的电离能 为 18 eV ;电子的初始条件为 $r_0 = 0$, $V_0 = 0$ (因为 电子初始速度为 ac 相对于光速是非常小的,其中 a为精细结构常数 ,约为 1/137)。通过模拟电子在激光 场与库仑场组成的联合势场中的运动 ,得到电子最 后相对于核的位移为 1.8 μ m 左右 ,可以认为已经被 电离。电子电离后剩余能量为 60 eV 左右 ,考虑到 参与相互作用的激光场强度 ,这样的电子平均能量

Fig. 1 (a) The electron energy changes by the time (T is laser period); (b) The distance between electron and core changes by the time

值得注意的是,我们在模拟中确实观察到电子 是从 *z* 方向(即激光传播方向)电离出去,而不是从 电场振荡方向 *x* 方向电离出去。这一点充分说明 放弃偶极近似的必要性。

图 1(a) 图 1(b)的横轴时间不同是因为它们取 自整个模拟时间范围内的不同时间段,因为光脉冲 传播方向上的电子位置在 20*T* 以后就基本上稳定 了,而电子剩余能量的变化直到 30*T* 以后才趋于稳 定,*T* 为激光光周期。这也是因为如此低的电子温 度,其对应的电子位置变化是非常小的。 上述模拟仅针对氢原子进行,更复杂的模拟应 当基于多电子原子进行。那是我们下一步的工作。

在模拟计算中,我们同时还计算了无库仑势时, 即自由电子与光场的相互作用,结果表明电子的剩 余能量只有0.9 eV,这与理论是非常符合的。在考 虑了库仑势后,根据有质动力作用的模型,电子的剩 余能量应该近似等于电子的电离能。但是在超短脉 冲跟原子的相互作用中,脉冲的相位和脉冲宽度都 会影响电子的剩余能量,其中的规律还有待进一步 的研究。

我们将该电离方案产生的等离子体称为极端非 平衡态等离子体,因为此时电子、离子的温度都非常 低,电子能量的分布也远非麦克斯韦分布,整个等离 子体是远离热平衡态的。这种双低温等离子体也许 能找到一些特殊的应用前景。这种非平衡等离子体 态也仅能在激光离开后的极短时间尺度内存在。

总之 本文的研究表明,在超短超强激光场条件 下 激光场中的磁场分量将有效地参与原子的电离 过程,并产生处于极端非平衡态的等离子体。通过 控制激光场的形状、强度甚至相位,可能产生所需要 的特定电子温度,并可控制电离电子与核的间距。 这方面的深入工作正在进行之中。

参考文献

- [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt. Commun., 1985, 56 (3) 219 ~ 221
- [2]陈荣清,徐至展,孙 岚等.光滑激光脉冲作用下的强场 自电离.光学学报,1991,11(8):673~677
- [3] 陈德应,卢兴发,夏元钦等.圆偏振光场电离电子能量分 布的计算.光学学报,1999,19(7) 884~888
- [4] Sarachik E S, Schappert G T. Classical theory of the scattering of intense laser radiation by free electrons. *Phys. Rev.* (D), 1970, 1(10) 2738 ~ 2753

Generation of an Extremely Non-Equilibrium Plasma by Ultrashort Ultrahigh Intensity Laser ——A New Ionization Mode for Atoms under Strong Laser Field

Cheng Ya Li Ruxin Zeng Zhinan Xu Zhizhan

(Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800) (Received 21 September 2000; revised 8 November 2000)

Abstract: A new ionization model based on the interaction of ultrashort , ultrahigh intensity laser with atoms pondermotive is proposed. It is possible to generate an extremely non-equilibrium plasma by this novel ionization mechanism.

Key words : ultrashort ultrahigh intensity laser ; pondermotive ionization ; plasma